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The difficulty of estimating joint kinematics remains a critical barrier toward widespread use of inertial
measurement units in biomechanics. Traditional sensor-fusion filters are largely reliant on magnetome-
ter readings, which may be disturbed in uncontrolled environments. Careful sensor-to-segment align-
ment and calibration strategies are also necessary, which may burden users and lead to further error
in uncontrolled settings. We introduce a new framework that combines deep learning and top-down
optimization to accurately predict lower extremity joint angles directly from inertial data, without rely-
ing on magnetometer readings. We trained deep neural networks on a large set of synthetic inertial data
derived from a clinical marker-based motion-tracking database of hundreds of subjects. We used data
augmentation techniques and an automated calibration approach to reduce error due to variability in
sensor placement and limb alignment. On left-out subjects, lower extremity kinematics could be pre-
dicted with a mean (±STD) root mean squared error of less than 1.27� (±0.38�) in flexion/extension, less
than 2.52� (±0.98�) in ad/abduction, and less than 3.34� (±1.02�) internal/external rotation, across walking
and running trials. Errors decreased exponentially with the amount of training data, confirming the need
for large datasets when training deep neural networks. While this framework remains to be validated
with true inertial measurement unit data, the results presented here are a promising advance toward
convenient estimation of gait kinematics in natural environments. Progress in this direction could enable
large-scale studies and offer new perspective into disease progression, patient recovery, and sports
biomechanics.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The ability to passively estimate movement kinematics in natu-
ral environments with inertial measurement units (IMUs) could
transform how we monitor, diagnose, and treat mobility limita-
tions. These devices are now unobtrusive, can flex and bend with
the skin, and allow for patient monitoring throughout the day
(Patel et al., 2012; Shull et al., 2014; Shull and Damian, 2015;
Son et al., 2014). Despite recent progress in hardware miniaturiza-
tion, turning large multimodal data from wearable sensors into
meaningful biomechanical outcomes that can be easily interpreted
in the context of healthy and pathological movement remains a
key challenge toward their widespread use (Picerno, 2017).
Biomechanists and rehabilitation specialists have traditionally
characterized gait using joint kinematics and kinetics. While seg-
ment inertial data generated by IMUs may also lead to important
actionable insights, accurate estimation of joint angles is needed
to place future findings in the context of past work.

There are currently no streamlined tools to accurately estimate
three-dimensional (3-D) joint kinematics from wearable sensors
worn in uncontrolled environments. Strap-down integration of
inertial data introduces drift, and sensor fusion algorithms that rely
on magnetometer data suffer from ferromagnetic disturbances (de
Vries et al., 2009). Solutions that incorporate full-body biomechan-
ical models (Robert-Lachaine et al., 2017a, 2017b, 2020) are cur-
rently not portable for anytime, anywhere use, and accuracy over
long durations remains to be demonstrated. Additionally, the
dependence of most algorithms on accurate sensor-to-segment
alignment makes translation difficult for multi-day monitoring
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outside of the laboratory, given human error in sensor placement.
Static and dynamic calibrations (Cutti et al., 2010; Favre et al.,
2009; Picerno et al., 2008; Roetenberg et al., 2009) may also add
to lack of compliance and increased drop-out rates in remote mon-
itoring studies. Further, static poses or functional calibration trials
may not be performed as expected in remote scenarios, especially
when users suffer from a mobility-limiting condition.

Deep learning and iterative optimization techniques offer a new
opportunity to overcome the limitations of previously proposed
approaches for estimating kinematics from IMUs. Deep neural net-
works are highly efficient in learning non-linear relationships from
high-dimensional data, such as dense time series from wearable
sensors. A key drawback, however, is that they require large data-
sets to generate accurate models, and such datasets are scarce in
the field of biomechanics. A large dataset that contains both IMU
data and ground truth joint kinematics from marker-based motion
tracking systems, for example, is currently not available to the
research community. In other domains, however, synthetic data
have been successfully used to train accurate predictive models
(Jaderberg et al., 2014). Additionally, optimization approaches
have demonstrated success in improving pose estimation in com-
puter vision applications (von Marcard et al., 2018).

The goal of this study was to build deep learning models for pre-
dicting 3-D lower extremity joint kinematics directly from angular
velocity and linear acceleration data, circumventing the limitations
of magnetometer-dependent algorithms. To generate sufficient
data to train such models, we created synthetic inertial data from
a marker-based motion capture database of hundreds of subjects
collected at a clinical center (Ferber et al., 2014; Osis et al.,
2015). We further incorporated data augmentation strategies
(Shorten and Khoshgoftaar, 2019) to increase the effective sensor
placement variability represented in the data, allowing the devel-
oped models to tolerate placement ambiguity without compromis-
ing accuracy. Additionally, we used an iterative top-down
optimization approach to improve the predictions of the deep
learning models.
2. Methods

2.1. Data collection and pre-processing

To train the models, we used marker-based motion capture data
that were previously collected at the University of Calgary Running
Injury Clinic after receiving approval from the University of Cal-
gary’s Conjoint Health Research Ethics Board (Ferber et al., 2016;
Jauhiainen et al., 2020; Phinyomark et al., 2018; Pohl et al.,
2010). Retro-reflective marker trajectories were collected at
200 Hz using eight high-speed infrared video cameras (Vicon
Motion Systems Ltd., Oxford, UK). After a static neutral trial, sub-
jects performed 60-second walking and running trials at self-
selected speeds on a treadmill, following a 2–5 min acclimation
period. The participants were patients who enrolled in either clin-
ical or research activities and gave written informed consent prior
to participation. A number of the participants were pain-free, while
others were experiencing a lower extremity running-related
injury.

To perform 3-D kinematic analysis, segment coordinate systems
were constructed based on anatomical markers placed on the fol-
lowing landmarks: 1st and 5th metatarsal heads; medial and lat-
eral malleoli; medial and lateral femoral condyles; greater
trochanter (bilateral); anterior superior iliac spine (bilateral); iliac
crest (bilateral). Tracking marker clusters were placed on the pelvis
and bilateral thighs and shanks. A rigid shell with three markers
was placed over the sacrum with the two superior markers at
the level of the posterior superior iliac spines, while rigid shells
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with four markers were attached to the shank and thigh
(Fig. 1A). Tracking markers for the feet were placed on the poste-
rior aspect of the shoes: two markers were vertically aligned on
the posterior heel counter with a third marker placed laterally.
Marker trajectories were filtered with a 10 Hz low-pass 2nd order
recursive Butterworth filter. Joint angles were calculated with cus-
tom software (Running Injury Clinic Inc., Calgary, Alberta, Canada)
using the six degree-of-freedom approach and expressed in terms
of joint coordinate systems recommended by the International
Society of Biomechanics (Grood and Suntay, 1983; Wu and
Cavanagh, 1995). Walking trials from 420 subjects (203 male and
217 female, height of 172.53 ± 8.94 cm, weight of 71.24 ± 12.71 kg)
and running trials from 580 subjects (292 male and 288 female,
height of 172.70 ± 11.39 cm, weight of 71.30 ± 12.97 kg) were
selected for further analysis here, after excluding data with
marker-tracking errors.

We generated synthetic inertial data by placing virtual sensors
on the tracking marker clusters (Fig. 1B). Seven coordinate systems
were created for the lower body (pelvis and both thighs, shanks,
and feet) based on the marker clusters, with the origins located
at the centroids of the clusters. Inertial data—angular velocity
and linear acceleration—were generated through numerical differ-
entiation. Linear acceleration was transformed from a global to a
local coordinate system after adding gravity, to match true
accelerometer readings. Gaussian noise with a standard deviation
that was 15% of the standard deviation of the signal was added
to simulate the random noise experienced by true sensors.

2.2. Deep neural networks for segment pose and joint angle prediction

We built deep neural networks that used the synthetic inertial
data described above (angular velocities and linear accelerations)
from two adjacent segments to predict true kinematics for a partic-
ular joint (Fig. 2). The networks were initially trained to predict
both segment orientation and joint angles. Each model took the
simulated inertial data from the two adjacent segments as input
and predicted both adjacent segment orientations and 3-D joint
angles. We tested two overarching deep learning architectures
with complementary strengths. The first was a one-dimensional
convolutional neural network (Conv1D), which makes efficient
predictions on a time-window that slides over the entire time ser-
ies and therefore is more efficient for offline processing. The second
was a long short-term memory network (LSTM), which is a specific
recurrent neural network that makes predictions one frame at a
time, updating an internal state to propagate previous information.
LSTMs trade lower computational efficiency during training for
higher efficiency in real-time applications.

The learning rate, learning rate decay factor, number of batch
iterations, dropout, and the number and size of the hidden layers
for both the Conv1D and LSTM models, as well as window size
for the Conv1D models and directionality for the LSTM models,
were tuned using a Tree of Parzen Estimators optimization algo-
rithm (Bergstra et al., 2011). For each set of hyperparameters, we
trained the model by randomly selecting a sequence length of 1 s
in stage one and a sequence length of 2 s in stage two. This two-
stage scheme allowed the model to update its parameters by first
learning the general trends of the gait cycle and then the cyclical
nature of the whole time series.

2.3. Data augmentation

To assess if data augmentation approaches could improve sen-
sitivity to sensors placement variability, we performed additional
experiments. We initially aligned the virtual sensors with the mar-
ker clusters and trained models using only these sensor placement
configurations (baseline model). The data were then augmented to



Fig. 1. Experimental Set Up and Data Generation. A) Marker-based motion capture data were previously collected at the Calgary Running Injury Clinic from hundreds of
subjects. B) Tracking marker clusters were used to place virtual IMUs in the sacrum, thighs, shanks, and feet (1–7, respectively). Synthetic accelerometry and gyroscope data
were generated by taking numerical derivatives and adding Gaussian noise.

Fig. 2. Hybrid Deep Learning and Optimization Approach. The synthetic sensor data (tri-axial linear acceleration and angular velocity) from adjacent segments were used to
predict true segment orientation ½RS1;RS2� and joint angles a1;a2;a3½ �. Segment orientation predictions were updated iteratively (optimization step) until the angular velocity
associated with them best matched the virtual sensor data, and updated joint angles were computed from these optimized orientations b1;b2; b3½ �. The final 3-D joint angles
(h) were then computed using a weighted average of the prediction from the deep learning model ðaÞ and the results of the optimization routine ðbÞ.
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account for sensor orientation variability by drawing randomly
sampled rotations from a normal distribution (STD = 13.5�) cen-
tered around the ‘‘true” orientation via an online augmentation
paradigm (Krizhevsky et al., 2012; Shorten and Khoshgoftaar,
2019). Models were also trained with the augmented dataset (aug-
mented model). We tested the performance of both of these models
on test data that were not augmented. Additional experiments
were run to gauge the ability of each of these models to compen-
sate for variability in sensor placement for the test subjects, which
was achieved by augmenting the test data in a similar manner to
the training data.
2.4. Segment pose optimization

To further improve accuracy, we implemented a top-down
optimization method that fine-tuned the neural network predic-

tion a by comparing the angular velocities ðX0 Þ from the pre-
dicted segment orientations RS with the angular velocities from
the true virtual IMU data ðXÞ. Each body-segment orientation
3

was updated iteratively until the angular velocities associated
with it best matched the virtual IMU data (Fig. 2). The final
3D joint angles (h) were then computed using a weighted aver-
age of the prediction from the deep learning model ðaÞ and the
results of the optimization routine ðbÞ. Here, we refer to this as
the optimized model.

Specifically, the combined deep learning and optimization
approach includes two stages: initialization and frame-by-frame
optimization. At the first stage, the deep neural networks estimate
an initial joint angle (aÞ and adjacent body segment orientations
(RS1 and RS2Þ. The frame-by-frame optimization stage updates the
predicted segment orientations iteratively by minimizing the fol-
lowing error term for each frame, k:

ek ¼ jXk �X
0
kj

The optimization was carried out using an unconstrained
Broyden-Fletcher-Goldfarb-Shanno optimizer with a function tol-
erance of 10-6, gradient tolerance of 10-5, and maximum iteration
number of 200. To derive the final joint angle estimation h, we used
a weighted average of the neural network prediction a and the
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optimization result b, where h ¼ w � aþ 1�wð Þ � b: The optimal
weight w was learned by minimizing the error between h and
the ground truth joint angles from optical motion tracking on the
training dataset.

2.5. Passive pseudo-calibration

Since the approach is purely data-driven and does not require a
biomechanical model with new data, an active calibration routine
with either static poses or dynamic functional tasks is not neces-
sary. Data-driven models, however, generalize better to subjects
whose neutral limb alignment is most represented in the training
dataset. To overcome this limitation, we expressed the time series
as a function of the mean joint angle in each degree of freedom.We
call this procedure passive pseudo-calibration, since it does not
engage the user and is not meant to replace a standard calibration.
It does, however, ensure that subjects with limb alignments away
from the mean have the same chance at accurate prediction of
kinematics as subjects who are closer to the mean.

2.6. Performance evaluation

The data were split into training (80%), validation (10%), and
test (10%) sets, and separate predictive models were trained for
each joint (hip, knee, ankle). The root-mean-squared error (RMSE)
between the predicted and ground truth kinematics was computed
for each joint and each hyper-parameter configuration. The model
with the minimum RMSE on the validation data was selected as the
best model for each joint. Final models were then tested on the
left-out, test data. Here we report RMSEs for the test data, using
the best models trained with non-augmented data (baseline model)
and augmented data (augmented model) before the optimization
step, and after incorporation of the optimization step (optimized
model). These models were evaluated with and without the passive
pseudo-calibration step. To determine the effect of training data
size on model performance, we trained and evaluated models
using only 10, 50, 100, 200 subjects, in addition to the standard
experiments with 80% of the total subjects. We randomly selected
the subsets and repeated the procedure 5 times. Here we report
mean (±STD) RMSEs from the 5 trials using models trained with
augmented data and tested with non-augmented data, without
implementing the optimization or pseudo-calibration steps since
the goal was to determine the effect of sample size on the neural
networks. All the models were tested on the same set of test sub-
jects (n = 42 for walking and n = 58 for running) per trial. Repeated
measures analyses of variance (ANOVAs) were carried out to deter-
mine if the RMSE changed significantly with more training data.
3. Results

Walking kinematics could be predicted with a mean (±STD)
RMSE of less than 2.75� (±0.66�), while running kinematics could
be predicted with a mean RMSE of less than 3.34 (±1.02�) using
Table 1
Predictive accuracy (mean RMSE ± STD in degrees) for walking kinematics at different ste

RMSE (mean ± std) Knee Hip

Flex Add Rot Flex

Baseline 3.73 � 1.64 3.20 � 1.25 6.73 � 3.50 4.9
+ Augmentation 3.80 � 1.68 3.22 � 1.36 6.58 � 3.79 5.0
+ Optimization 3.12 � 1.91 3.18� 1.36 6.35 � 3.88 4.3

+ Passivepseudo-
calibration

Baseline 2.27 � 0.47 2.23 � 0.76 3.53 � 0.82 2.3
+ Augmentation 2.17 � 0.57 2.20 � 0.86 3.12 � 0.73 2.2
+ Optimization 0.97 � 0.38 2.16 � 0.85 2.75 � 0.66 0.6
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the optimized model, along with pseudo-calibration. During walk-
ing, flexion/extension was the most accurate degree of freedom,
with a mean RMSE of less than 0.97� (±0.38�) across the ankle,
knee, and hip joints, followed by ab/adduction with a mean RMSE
of less than 2.16� (±0.85�) and internal/external rotation with a
mean RMSE of less than 2.75� (±0.66�) (Table 1; Fig. 3). Similarly,
during running, flexion/extension was the most accurate degree
of freedom, with a mean RMSE of less than 1.27� (±0.38�) across
the ankle, knee, and hip joints, followed by ab/adduction with a
mean RMSE of less than 2.52� (±0.98�), and internal/external rota-
tion with a mean RMSE of less than 3.34� (±1.02�) (Table 2; Fig. 3).
Generally, Conv1D models with 2–3 hidden layers, more than 50
nodes per layer, a window size greater than 55 ms, learning rate
greater than 0.001, and 5000 iterations performed the best.

The final predictive performance reported above improved from
the baseline neural network predictions through the use of itera-
tive optimization, mainly for flexion/extension angles, but not
the other degrees of freedom. Optimization improved prediction
of knee flexion by over 15%, hip flexion by over 10%, and ankle flex-
ion by over 15% (Tables 1 and 2). When passive pseudo-calibration
was also applied, optimization had an even larger effect on final
kinematics. In this case, prediction of knee flexion improved by
over 50%, hip flexion by over 65%, ankle flexion by over 45%, and
internal/external rotation of the hip and ankle by about 30% com-
pared to the neural network outputs. For other degrees of freedom,
optimal weight priors (w) were close to 1, indicating that the pre-
diction was predominantly based on the neural network. Aug-
menting the training dataset to account for sensor application
variability resulted in lower RMSEs when the test data were also
augmented (Table 3), but not when the test data were not aug-
mented (Table 2).

Increasing the amount of training data led to lower mean
RMSEs when predicting kinematics in new subjects, during both
walking and running (Fig. 4; p < .0001). Results from models using
the maximum number of training subjects are different from those
reported earlier (Tables 1 and 2) since here we averaged across 5
trials. Also, the reported RMSEs do not include optimization and
pseudo-calibration steps. Overall, fitted learning curves indicated
improvements of over 1�for flexion/extension. On a linear scale,
the learning curves also started to, but did not completely, plateau
as the training data increased from tens to hundreds of subjects,
indicating that inclusion of more data in the future could continue
to reduce the RMSE. Projections indicate that thousands of subjects
are needed to improve the models by another degree (Fig. 4).
4. Discussion

The goal of this study was to introduce a new framework that
combines deep neural networks with top-down optimization for
prediction of lower extremity kinematics from inertial sensing
data. Using this hybrid approach and synthetic inertial data from
a large clinical motion capture database, we could predict walking
and running kinematics with accuracies that are similar to the reli-
ps of the pipeline.

Ankle

Add Rot Flex Add Rot

7 � 2.40 2.78 � 1.21 5.71 � 3.06 2.15 � 0.77 2.76 � 1.42 4.81 � 2.70
2 � 2.49 2.86 � 1.30 5.75 � 3.13 2.20 � 0.77 2.90 � 1.45 4.62 � 2.72
4 � 2.77 2.70 � 1.33 5.16 � 3.37 1.77 � 0.91 2.75 � 1.50 4.28 � 2.87
7 � 0.59 2.02 � 0.74 2.79 � 0.73 1.37 � 0.30 1.56 � 0.38 2.40 � 0.50
7 � 0.56 2.10 � 0.83 2.61 � 0.73 1.40 � 0.31 1.57 � 0.46 2.02 � 0.49
7 � 0.37 1.88 � 0.89 1.42 � 0.71 0.72 � 0.28 1.32 � 0.51 1.30 � 0.62



Fig. 3. Predicted and Marker-Based Kinematics. A representative gait cycle from a subject whose RMSEs of the predicted versus marker-based kinematics were close to the
mean across all subjects. Predictions from the combined deep learning and optimization framework (dashed) closely match marker-based kinematics (solid gray), especially
in flexion/extension (red), followed by add/abduction (green) and internal/external rotation (blue). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 2
Predictive accuracy (mean RMSE ± STD in degrees) for running kinematics at different steps of the pipeline.

RMSE (mean ± std) Knee Hip Ankle

Flex Add Rot Flex Add Rot Flex Add Rot

Baseline 4.25 � 1.76 4.12 � 2.01 6.51 � 3.90 5.08 � 2.72 3.33 � 1.46 5.36 � 2.57 2.75 � 1.16 2.92 � 1.69 4.62 � 2.70
+ Augmentation 4.08 � 1.83 4.22 � 2.17 6.62 � 3.84 5.09 � 2.76 3.24 � 1.46 5.17 � 2.70 2.67 � 1.11 3.15 � 1.83 4.53 � 2.65
+ Optimization 3.21 � 2.10 4.16 � 2.20 6.55 � 3.88 4.31 � 3.08 2.98 � 1.46 4.59 � 2.90 2.13 � 1.28 3.00 � 1.90 4.51 � 2.73

+ Passivepseudo-
calibration

Baseline 2.84 � 0.69 2.63 � 0.91 3.43 � 0.96 2.63 � 0.54 2.31 � 0.89 2.86 � 0.77 1.91 � 0.55 1.66 � 0.44 2.20 � 0.56
+ Augmentation 2.60 � 0.58 2.59 � 0.96 3.46 � 0.93 2.42 � 0.55 2.25 � 0.97 2.54 � 0.69 1.76 � 0.45 1.85 � 0.52 1.92 � 0.55
+ Optimization 1.27 � 0.38 2.52 � 0.98 3.34 � 1.02 0.79 � 0.32 1.87 � 0.94 1.32 � 0.78 0.94 � 0.34 1.60 � 0.67 1.78 � 1.07

Table 3
Predictive accuracy (mean RMSE ± STD in degrees) of the baseline and augmented models. No optimization or passive pseudo-calibration was applied.

RMSE (mean ± std) Knee Hip Ankle

Flex Add Rot Flex Add Rot Flex Add Rot

Walking Baseline 8.27 � 4.38 4.87 � 2.01 9.38 � 4.72 9.57 � 5.70 4.33 � 2.07 8.76 � 4.92 5.79 � 2.57 4.82 � 2.34 7.12 � 3.42
+ Augmentation 3.87 � 1.69 3.35 � 1.43 6.77 � 3.85 5.13 � 2.41 2.82 � 1.26 5.91 � 3.25 2.32 � 0.78 2.98 � 1.48 4.70 � 2.66

Running Baseline 7.56 � 4.03 5.55 � 2.72 8.54 � 3.90 7.91 � 4.29 4.45 � 1.79 6.94 � 3.15 6.64 � 3.75 5.42 � 2.50 7.09 � 3.02
+ Augmentation 4.23 � 1.78 4.26 � 2.18 6.59 � 3.63 5.14 � 2.72 3.37 � 1.56 5.39 � 2.69 2.82 � 1.24 3.28 � 1.88 4.60 � 2.67
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ability of marker-based motion tracking. We also demonstrated
that augmentation techniques that increase effective sensor place-
ment variability can improve model generalizability to sensor
placement inconsistencies. Specifically, kinematics could be pre-
dicted with a mean RMSE of less than 1.27� (±0.38�) in flexion/ex-
tension, less than 2.52� (±0.98�) in ad/abduction, and less than
3.34� (±1.02�) internal/external rotation. Predictive accuracy was
consistent across male and female subjects and did not vary with
subject weight and height (analysis not presented here). The
higher RMSE in internal/external rotation may be explained by
5

the lack of magnetometer data, which, when undisturbed, con-
tribute toward heading estimation. Further, optical motion track-
ing, which was used as ground truth here, exhibits similar
accuracies across degrees of freedom (Miranda et al., 2013; Tsai
et al., 2011).

These promising results should be interpreted in the context of
several limitations associated with the study. First, while we used
data from hundreds of subjects, which contributed to improved
model generalizability, the data were not acquired from true iner-
tial sensors. Synthetic inertial data were generated from virtual



Fig. 4. Neural Network Learning Curves. Models trained using a training data of different sizes (10, 50, 100, 200, and 80% of all the subjects) demonstrate that performance
improves with larger datasets. Mean (±95% CI) RMSE on the same set of left-out test data significantly decreased with models trained on larger data. Fitted lines (dashed gray)
estimate the amount of training data needed to improve performance further.
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sensors placed in accordance with optical motion tracking mark-
ers. We modeled the white noise associated with inertial sensors
synthetically, but several other sources of noise, including zero-
offset bias and soft tissue movement, were not modeled. While
we expect the bias not to significantly affect the performance of
these models, soft-tissue artifact remains a challenge. A second
limitation is that, although moderate placement errors are sur-
mountable given our data augmentation approach, the models
developed here can only lead to plausible predictions if the sensors
are placed on the same location as the location that we placed the
virtual IMUs, which coincided with the location of the tracking
marker clusters. Future work can focus on training more generaliz-
able models that include virtual IMUs placed on several locations
across each body segment. Another limitation is that the models
were trained using treadmill walking and running data, while their
intended use is for over-ground activities. Previous studies have
documented little to no differences between treadmill and level
ground walking and running (Riley et al., 2007). While we expect
the models to generalize well to level walking and running, rugged
terrain may introduce challenges. It is also important to note that
for the proposed algorithms to be successful at predicting kinemat-
ics, walking and running should be segmented out of time series
collected in free-living environments, which may include other
activities and turns. Activity classification algorithms can predict
walking and running with high accuracy given a few sensors worn
on lower extremity segments (Mannini and Sabatini, 2010).

While validation with true sensor data is a necessary follow-up
step, the accuracy of the presented framework is a promising
advance toward prediction of joint kinematics from IMUs without
relying on drift-prone algorithms and error-prone calibration tech-
niques. Previously proposed approaches have reported RMSEs of
more than 3� over limited durations (Dorschky et al., 2019;
Karatsidis et al., 2018; Robert-Lachaine et al., 2020, 2017b).
Because many rely on the use of magnetometers and filtering
approaches, long-term reliability remains a limitation for natural
environment applications. Algorithms that incorporate resetting
to reduce drift (e.g., zero velocity update) may not generalize well
to clinical populations with unpredictable gait patterns (Yang et al.,
2013). In addition to not experiencing drift, our models are also
well-suited for real-time applications that integrate monitoring
with biofeedback. While the optimization step may introduce
delays for real-time estimation and be better suited for post-hoc
analyses, deep neural networks without the optimization step
demonstrate mean RMSEs of less than 3.46� (±0.93).
6

Reducing model sensitivity to sensor placement variability is
desired for translation of wearable sensors out of the laboratory
and clinic, where patients will have to apply them on their own,
and likely more than once. While previous approaches are reliant
on careful sensor-to-segment alignment and calibration trials,
including functional (Favre et al., 2009), positional (Robert-
Lachaine et al., 2017b), and constraint-based (Seel et al., 2014) cal-
ibrations, our approach foregoes any active calibration and can
overcome the challenges posed by sensor placement variability
or need for supervision by trained research or clinical staff. We
instead used data augmentation and passive pseudo-calibration
to overcome sensor placement and natural limb alignment vari-
ability. Data augmentation is an advantageous technique for
increasing the amount of effective training data, and here we
demonstrated that it can reduce the effect of sensor placement
variability. Further, the predictive accuracy of our algorithms can
be tuned passively after a few gait cycles (Fig. 5), without requiring
attention from the user as is the case with active calibration
routines.

The accuracy of the models presented here is in part due to the
large motion capture dataset that we used, which enabled the gen-
eration of a synthetic IMU database with hundreds of subjects.
Large datasets are a requisite for training generalizable deep neural
networks, but they are often not available in movement biome-
chanics. While the use of machine learning is growing, often deep
neural networks are trained on limited data (Halilaj et al., 2018).
Our experiments demonstrated that models trained on data from
a larger number of subjects (i.e., hundreds) exhibit lower RMSEs
compared to models trained on smaller data (i.e., tens), suggesting
that they are more likely to generalize well to new, independent
data. Learning curves (Fig. 4) are useful tools for determining
how much data may be sufficient for a particular application,
allowing one to weigh improvement in accuracy against efforts
associated with acquiring more data. For studies designed with a
machine learning approach in mind (instead of traditional hypoth-
esis testing), they can replace power analyses in the planning
phase.

Overall, this study introduced an integrated deep learning and
optimization framework for the prediction of joint kinematics from
inertial sensing data and presented a series of experiments that
enable evaluation of the critical steps that contributed to the accu-
racy of these data-driven models. The presented techniques can
also be extended to estimation of joint kinetics in the future
(Johnson et al., 2020). While further validation of the models with



Fig. 5. Effect of Passive Pseudo-Calibration. Prediction error for all three degrees of freedom was higher in subjects with overall kinematics that were further away from the
mean, likely due to differences in limb alignment and sensor placement (light red, green, blue). Using the mean joint angles as a neutral pose, we passively calibrated joint
angle predictions, which rendered the error relatively similar across subjects, despite their deviation from the mean (dark red, green, blue). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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true IMU data is a necessary next step, the promising results pre-
sented here, along with the publicly available tools, are encourag-
ing steps toward addressing one of the most pressing technical
challenges in modern-day biomechanics.
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