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Introduction 
One limitation to measuring human movement patterns from 
inertial measurement units (IMUs) is the susceptibility of 
magnetometer readings to ferromagnetic interferences. To 
address this limitation, we recently proposed the use of deep 
neural networks to predict joint angles directly from inertial data, 
without relying on noisy magnetometer readings [1]. To further 
improve the accuracy and generalizability of these models, here 
we introduce a new framework that combines deep learning with 
top-down optimization. 
 
Methods 
To train the deep neural networks, we used treadmill running data 
from 586 subjects and walking data from 384 subjects collected 
at the University of Calgary using an optical motion tracking 
system. Synthetic IMU data (linear acceleration and angular 
velocity) were generated by placing virtual IMUs on the segment 
marker clusters. Sensor noise was modelled synthetically by 
adding Gausian noise [1], while sensor placement variability was 
modelled using data augmentation techniques [2]. As a baseline, 
we built deep neural networks to predict the joint angles, 𝜶𝒊 ሺ𝒊 ∈
ሼ𝟏, 𝟐, 𝟑ሽ), and orientations of the adjacent segment sensors, 𝒒𝑺 ൌ
ሼ𝒒𝑺𝟏, 𝒒𝑺𝟐ሽ, from the inertial data. 
 We then implemented a top-down optimization algorithm, 
which updated the orientation of each adjacent segment until the 
discrepancy between the inertial data associated with these 
predicted orientations and the ³trXe´ inertial data from the YirtXal 
senors was minimized. The result of the optimization (𝛽௜) was 
defined as the angle between two optimized sensor orientations. 
To derive final angle prediction ሺ𝜃௜ሻ, we used weighted average 
of two prediction results 𝛼௜  and 𝛽௜ , where 𝜃௜ ൌ 𝑤௜𝛼௜ ൅ ሺ1 െ
𝑤௜ሻ𝛽௜. We set terminal stance of the predicted angle as zero and 
express the subsequent predictions as a function of the angle at 
that pose. We call this process passive pseudo calibration, since 
it does not require user engagement but is effective in reducing 
prediction error in subjects with atypical limb alignments.  
 
Results and Discussion 
Walking kinematics could be predicted with a mean (± STD) 
RMSE of less than 2.95° (± 0.82°), while running kinematics 
could be predicted with a mean RMSE of less than 3.24° (± 
1.12°). During walking, flexion/extension was the most accurate 
degree of freedom, with a mean RMSE of less than 1.07° (± 
0.37°) across the ankle, knee, and hip joints, followed by 
ab/adduction with a mean RMSE of less than 1.98 (± 0.97) and 
internal/external rotation with a mean RMSE of less than 2.95° 
(± 0.82°). Similarly, during running, flexion/extension was the 
most accurate degree of freedom, with a mean RMSE of less than 
1.29° (± 0.40°) across the ankle, knee, and hip joints, followed by 
ab/adduction with a mean RMSE of less than 2.33° (± 0.84°), and 
internal/external rotation with a mean RMSE of less than 3.24° 
(± 1.12°). The higher RMSE in internal/external rotation may be 
explained by the lack of magnetometer data, which, when 
undisturbed, contribute toward heading estimation. Further, 

optical motion tracking, which was used as ground truth here, 
exhibited similar accuracies across degrees of freedom. 
Optimization improved prediction of knee flexion by over 15%, 
hip flexion by over 10%, and ankle flexion by over 15%. When 
passive pseudo-calibration was applied, optimization had an even 
larger effect on final kinematics. In this case, prediction of knee 
flexion improved by over 45%, hip flexion by over 60%, and 
ankle flexion by over 40%, compared to the neural network 
outputs. Using this pseudo-calibration framework the predictive 
accuracy of the algorithms can be tuned passively after a few gait 
cycles, without requiring attention from the user. Also, because 
we trained the models on augmented data, sensor placement 
errors did not significantly degrade the predictive accuracy of the 
overall framework. While validation with true sensor data is a 
necessary follow-up step, the accuracy of the presented 
framework is a promising advance toward prediction of joint 
kinematics from wearable sensors without relying on 
ferromagnetic interference, drift-prone algorithms, and/or error-
prone calibration techniques.  

 
Figure 1: Knee flexion over a representative gait cycle for a test subjet 
computed from marker data (solid), predicted from a deep neural 
network (dash), and adjusted with top-down optimization (dotted), 
demonstrating how optimization improves joint angle estimation. 
 
Significance 
Wearable sensors offer a promising alternative for motion 
analysis in natural environments by overcoming some of the 
limitations of traditional marker-based techniques: spatial 
limitation, expensive equipment, and need for human expertise. 
The hybrid deep learning and top-down optimization approach 
presented here brings us a step closer toward accurate estimation 
of kinematics from IMUs. Progress in this direction should 
enable large-scale studies and new insights into disease 
progression, patient recovery, and sports biomechanics. 
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